Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | \(g_{-3}\) | \(h_{3}\) | \(-h_{5}-h_{4}+h_{2}\) | \(-h_{6}-h_{4}+h_{1}\) | \(g_{3}\) | \(g_{10}\) | \(g_{2}\) | \(g_{14}\) | \(g_{8}\) | \(g_{15}\) | \(g_{18}\) | \(g_{16}+g_{11}\) | \(g_{7}\) | \(g_{12}\) | \(g_{17}\) | \(g_{20}\) | \(g_{19}\) | \(g_{21}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{1}-2\psi_{3}\) | \(0\) | \(0\) | \(0\) | \(4\psi_{1}+2\psi_{3}\) | \(\omega_{2}-2\psi_{1}-4\psi_{2}\) | \(\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}\) | \(\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}\) | \(\omega_{2}+2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}\) | \(2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}\) | \(2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}\) | \(2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}\) | \(4\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{1}-2\psi_{3}} \) → (0, 0, -4, 0, -2) | \(\displaystyle V_{0} \) → (0, 0, 0, 0, 0) | \(\displaystyle V_{4\psi_{1}+2\psi_{3}} \) → (0, 0, 4, 0, 2) | \(\displaystyle V_{\omega_{2}-2\psi_{1}-4\psi_{2}} \) → (0, 1, -2, -4, 0) | \(\displaystyle V_{\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}} \) → (0, 1, -2, 4, -2) | \(\displaystyle V_{\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}} \) → (0, 1, 2, -4, 2) | \(\displaystyle V_{\omega_{2}+2\psi_{1}+4\psi_{2}} \) → (0, 1, 2, 4, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}} \) → (2, 0, -2, -2, -4) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}} \) → (2, 0, 2, -2, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}} \) → (2, 0, -2, 2, 2) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}} \) → (2, 0, 2, 2, 4) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}} \) → (2, 1, 0, 2, -4) | \(\displaystyle V_{2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}} \) → (2, 1, 0, -2, 4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{1}-2\psi_{3}\) | \(0\) | \(4\psi_{1}+2\psi_{3}\) | \(\omega_{2}-2\psi_{1}-4\psi_{2}\) \(-\omega_{2}-2\psi_{1}-4\psi_{2}\) | \(\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}\) \(-\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}\) | \(\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}\) \(-\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}\) | \(\omega_{2}+2\psi_{1}+4\psi_{2}\) \(-\omega_{2}+2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}\) \(-2\psi_{1}-2\psi_{2}-4\psi_{3}\) \(-2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}\) | \(2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}\) \(2\psi_{1}-2\psi_{2}-2\psi_{3}\) \(-2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}\) \(-2\psi_{1}+2\psi_{2}+2\psi_{3}\) \(-2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}\) \(2\psi_{1}+2\psi_{2}+4\psi_{3}\) \(-2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}\) \(\omega_{2}+2\psi_{2}-4\psi_{3}\) \(2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}\) \(-2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}\) \(-\omega_{2}+2\psi_{2}-4\psi_{3}\) \(-2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}\) | \(2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}\) \(\omega_{2}-2\psi_{2}+4\psi_{3}\) \(2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}\) \(-2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}\) \(-\omega_{2}-2\psi_{2}+4\psi_{3}\) \(-2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{1}-2\psi_{3}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{1}+2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{2}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{2}+2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}}\oplus M_{-2\psi_{1}-2\psi_{2}-4\psi_{3}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus M_{2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus M_{-2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus M_{-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus M_{-2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}}\oplus M_{2\psi_{1}+2\psi_{2}+4\psi_{3}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}} \oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{-\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{-2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}} \oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{-\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{-2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{1}-2\psi_{3}}\) | \(\displaystyle 3M_{0}\) | \(\displaystyle M_{4\psi_{1}+2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{2}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}-2\psi_{1}+4\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}+2\psi_{1}-4\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{2}+2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}}\oplus M_{-2\psi_{1}-2\psi_{2}-4\psi_{3}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus M_{2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus M_{-2\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus M_{-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus M_{-2\omega_{1}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}}\oplus M_{2\psi_{1}+2\psi_{2}+4\psi_{3}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}} \oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{-\omega_{2}+2\psi_{2}-4\psi_{3}}\oplus M_{-2\omega_{1}-\omega_{2}+2\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}} \oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{-\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus M_{-2\omega_{1}-\omega_{2}-2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) |